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2 Complex Integration

2.1 Integration along paths

De�nition 2.1. Let I = [a, b] ⊂ R be a compact interval. A continuous
map γ : I → C is called a curve in C. We denote the image of the curve
γ by |γ|. If γ(a) = γ(b), the curve is called closed. A curve γ : I → C
is called a path i� it is piecewise continuously di�erentiable. That is, there
exist points a = x0 < x1 < · · · < xn = b such that γ restricted to [xk−1, xk]
is continuously di�erentiable for all k ∈ {1, . . . , n}.

Recall that continuous di�erentiability in a closed interval [a, b] means
di�erentiability in (a, b) such that the di�erential is continuous and has a
continuous extension to [a, b].

For the theory of integration along paths what is important in a path is
its image in and in which direction this is retraced. In contrast, the concrete
parametrization of a path via an interval I ⊂ R is not important. To make
this more precise we de�ne the concept of reparametrization of a path.

De�nition 2.2. Let γ : [a, b] → C and γ̃ : [ã, b̃] → C be paths. We say that
γ̃ is a reparametrization of γ i� there exists a monotonous, continuous and
piecewise continuously di�erentiable map φ : [ã, b̃] → [a, b] with φ(ã) = a
and φ(b̃) = b and such that γ̃ = γ ◦ φ.

We will be interested only in properties and usages of paths that are
invariant under reparametrization. The �rst such property we consider is
the length of a path. Intuitively it is quite clear what we mean by this. If a
path γ : [a, b] → C is a straight line

γ(t) :=
(b − t)x1 + (t − a)x2

b − a

with end points x1 and x2, then its length should be |x2 − x1| where we use
the standard Euclidean inner product on C. In general, we can approximate
a path by subdividing the interval on which it is de�ned and replacing the
pieces of paths in subdivisions by straight lines. The length of the path
should then be the limit of the sum of the lengths of these straight lines
when we make the subdivisions arbitrarily �ne. That this limit exists is
due to the piecewise continuous di�erentiability property we have imposed.
(The limit does not necessarily exist for arbitrary curves, even if their image
is bounded.) The result is the following, which we state as a de�nition.
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De�nition 2.3. Let γ : [a, b] → C be a path. The length of γ, denoted l(γ)
is de�ned by,

l(γ) :=
∫ b

a
|γ′(t)|dt.

Exercise 9. (a) Show that the de�nition indeed agrees with the result of
the procedure described above. (b) Give an example of a curve that has
bounded image, but no well de�ned length.

Exercise 10. Show that the length of a path is invariant under reparametriza-
tion. That is, show that if γ is a path and γ̃ is a reparametrization of γ,
then l(γ) = l(γ̃).

De�nition 2.4. Let U ⊆ C be open and f : U → C be a continuous map.
Let γ : I → C be a path such that |γ| ⊂ U . We de�ne the complex integral

of f along the path γ as follows,∫
γ
f(z) dz :=

∫ b

a
f(γ(t))γ′(t) dt. (1)

To make sense of this de�nition we note that t 7→ f(γ(t))γ′(t) is a piece-
wise continuous function I → C and is therefore bounded and integrable.

Proposition 2.5. The complex integral is invariant under reparametriza-

tions: Given an open set U ⊆ C, a continuous function f : U → C, a path γ
with |γ| ⊂ U and a reparametrization γ̃ of γ. Then,∫

γ̃
f(z) dz =

∫
γ
f(z) dz.

Proof. Exercise.

Similarly to what we have seen in the context of the concept of derivative,
the concept of integration introduced is quite similar to what we are familiar
with in the case of R or Rn. Nevertheless, again, there is an important
di�erence that makes crucial use of the fact that the complex numbers form
a �eld. If we were to discuss integration along paths in R2 weighted by
path length, the formula to use would be almost identical to (1), with one
important di�erence: γ′ would be a 2× 1-matrix and we would insert |γ′(t)|
instead of γ′(t) on the right hand side. Decomposing γ′ = reiθ the di�erence
is that in the real case we would only put the absolute value r. We might
think of the complex case as letting the direction of the curve (encoded in
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θ) enter the integrand. As we shall see, this leads to a remarkable interplay
between complex integral and derivative.

Suppose γ1 : [a, b] → C and γ2 : [b, c] → C are paths such that γ1(b) =
γ2(b). Then, we can form the composite path γ1 ·γ2 : [a, c] → C in the obvious
way. We have then,∫

γ1·γ2

f(z) dz =
∫

γ1

f(z) dz +
∫

γ2

f(z) dz.

Because of Proposition 2.5 we are usually interested in paths only up to
reparametrization. That is, we consider two paths as equivalent if one is a
reparametrization of the other. We may then talk about the composition of
paths whenever the endpoint of the �rst coincides with the initial point of
the second.

Given a path γ : [0, 1] → C we may form the opposite path γ−1 : [0, 1] →
C given by γ−1(t) = γ(1 − t). Then clearly, (γ−1)−1 = γ. As is easy to see,∫

γ−1

f(z) dz = −
∫

γ
f(z) dz.

We also �nd that the integral of any function along γ · γ−1 vanishes. γ · γ−1

is called a retracing. Because the integral along a retracing vanishes, we
consider a retracing as equivalent to the trivial path.

Exercise 11. The concept of reparametrization can be generalized to include
some form of retracing. To this end remove the monotonicity condition
from De�nition 2.2. (a) Is the length of a path invariant under generalized
reparametrization? (b) Is the complex integral along a path invariant under
generalized reparametrization?

Proposition 2.6 (Transformation rule). Let D ⊆ C be a region, g ∈ O(D)
such that g′ : D → C is continuous and γ a path with |γ| ⊂ D. Then, g ◦ γ
is a path and for any continuous function f : U → C where U ⊆ C is open

and |g ◦ γ| ⊂ U we have,∫
g◦γ

f(z) dz =
∫

γ
f(g(z))g′(z) dz.

Proof. Exercise.

Proposition 2.7. Let U ⊆ C be open, f : U → C continuous, γ be a path

with |γ| ⊂ U . Set ‖f‖γ := supz∈|γ| |f(z)|. Then,∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ ≤ |f |γl(γ).
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Proof. Exercise.

Proposition 2.8. Let U ⊆ C be open and {fn}n∈N a sequence of continuous

functions fn : U → C converging uniformly. Let γ be a path in U . Then,

lim
n→∞

∫
γ
fn(z) dz =

∫
γ

lim
n→∞

fn(z) dz.

Proof. Exercise.[Hint: Use Proposition 2.7.]

2.2 Integrable Functions

De�nition 2.9. Let D ⊆ C be a region and f : D → C be continuous. If
F ∈ O(D) such that F ′ = f , then F is called a primitive of f . f is called
integrable in D if there exists such a primitive.

Theorem 2.10. Let D ⊆ C be a region, f : D → C be continuous and

F : D → C. Then, F is a primitive of f i� for every path γ : [a, b] → D∫
γ
f(z) dz = F (γ(b)) − F (γ(a)).

Proof. Suppose F is a primitive of f . Assume without loss of generality that
γ is continuously di�erentiable everywhere. Then, using the chain rule,∫

γ
f(z) dz =

∫ b

a
F ′(γ(t))γ′(t) dt =

∫ b

a
(F ◦ γ)′(t) dt = F (γ(b)) − F (γ(a)).

Conversely, suppose that F satis�es the stated formula for every path γ
in D. Let z ∈ D and choose r > 0 such that Br(z) ⊆ D. For ξ ∈ Br(0) let
γξ : [0, 1] → C be the path γξ(t) := z + tξ. By assumption,

F (z + ξ) − F (z) =
∫

γξ

f(ζ) dζ =
∫ 1

0
f(z + tξ)ξ dt

For ξ 6= 0 we get,

F (z + ξ) − F (z)
ξ

=
∫ 1

0
f(z + tξ) dt.

The right hand side of this expression converges to f(z) when |ξ| → 0 since,∣∣∣∣(∫ 1

0
f(z + tξ) dt

)
− f(z)

∣∣∣∣ ≤ ∫ 1

0
|f(z + tξ) − f(z)| dt

≤ sup
ζ∈B|ξ|(0)

|f(z + ζ) − f(z)|,
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where the right hand side expression converges to zero for |ξ| → 0 by conti-
nuity of f . Thus, F is complex di�erentiable at z with the di�erential being
F ′(z) = f(z). This completes the proof.

Proposition 2.11. Let D ⊆ C be a region and f : D → C be continuous.

Then, f is integrable in D i� for every closed path γ in D we have:∫
γ
f(z) dz = 0.

Proof. If f is integrable, then by Theorem 2.10 the integral along any close
path must be zero. Conversely, suppose the integral of f along any closed
path is zero. Choose z0 ∈ D arbitrarily. De�ne

F (z) :=
∫

γz

f(z) dz,

where γz : [a, b] → D is a path such that γz(a) = z0 and γz(b) = z. Such
a path always exists by the path-connectedness of D. Also, the de�nition
of F (z) is well, since any other path with the same end points must yield
the same value by assumption. F : D → C de�ned in this way satis�es the
assumption of Theorem 2.10 and is thus a primitive of f .

De�nition 2.12. Let D ⊂ C be a region. We call D star-shaped with
center z0 ∈ D i� for every element z ∈ D the path γ : [0, 1] → C given by
γ(t) := z0 + t(z − z0) lies entirely in D.

A triangle ∆ is a closed subset of C with the shape of a triangle. Its
boundary ∂∆ is the union of three straight line segments. We also denote by
∂∆ a closed path that traces the boundary of the triangle once in positive
(i.e., counter-clockwise) direction.

Proposition 2.13. Let D ⊆ C be a star-shaped region with center z0. Let

f : D → C be continuous. Then, f is integrable in D i� for every triangle

∆ in D with z0 a corner, ∫
∂∆

f(z) dz = 0.

Proof. If f is integrable, we obtain the required implication as a special case
of Proposition 2.11. Conversely, we show that f is integrable if the integral
along all triangles in D with one vertex in z0 vanishes. We de�ne a function
F : D → C as follows. Let z ∈ D and de�ne the path γz : [0, 1] → C by
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γ(t) := z0 + t(z− z0). Since D is star-shaped with center z0, the path γz lies
entirely in D. Then set,

F (z) :=
∫

γz

f(z) dz.

Fix z ∈ D. By star-shapedness of D there exist r > 0 such that Br(z) ⊆ D
and for all ζ ∈ Br(z) the path γζ lies entirely in D. For all ξ ∈ Br(0) set
γ̃ξ : [0, 1] → C to be the path γ̃ξ(t) = z + tξ. Then, by assumption,

F (z + ξ) − F (z) =
∫

γz+ξ

f(z) dz −
∫

γz

f(z) dz =
∫

γ̃ξ

f(z) dz,

and we may proceed as in the proof of Theorem 2.10 to show that F is a
primitive of f at z. This completes the proof.

Proposition 2.14 (Integral Lemma of Goursat). Let D ⊆ C be a region,

f ∈ O(D) and ∆ ⊂ D a triangle. Then,∫
∂∆

f(z) dz = 0.

Proof. We produce a sequence of triangles {∆n}n∈N with ∆n ⊂ D by itera-
tion. Set ∆1 := ∆. To produce ∆n+1 from ∆n proceed as follows. Subdivide
∆n into four triangles ∆n,1, . . . , ∆n,4 by subdividing each of its sides into two
pieces of equal length. Now choose k ∈ {1, 2, 3, 4} such that the absolute
value ∣∣∣∣∣

∫
∆n,k

f(z) dz

∣∣∣∣∣
is maximized and set ∆n+1 := ∆n,k. This de�nes a sequence of triangles.
Note that the intersection

∩
n∈N ∆n is a single point z0 ∈ D.

By the addition property of the integral along paths we have for every
n ∈ N the identity∫

∂∆n

f =
∫

∂∆n,1

f +
∫

∂∆n,2

f +
∫

∂∆n,3

f +
∫

∂∆n,4

f.

By the maximality condition of our construction, this implies, for all n ∈ N,∣∣∣∣∫
∂∆n

f

∣∣∣∣ ≤ 4

∣∣∣∣∣
∫

∂∆n+1

f

∣∣∣∣∣ , (2)
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and thus, ∣∣∣∣∫
∂∆

f

∣∣∣∣ ≤ 4n−1

∣∣∣∣∫
∂∆n

f

∣∣∣∣ .

For the circumference of the triangles we obtain the relation,

l(∂∆n) =
1

2n−1
l(∂∆). (3)

Now set ε > 0 arbitrarily and choose r > 0 such that Br(z0) ⊆ D and

|g(z)| < ε|z − z0|, where g(z) := f(z) − f(z0) − f ′(z0)(z − z0)

for all z ∈ Br(z0). (This is possible since f is complex di�erentiable at z0.)
Now �x n ∈ N such that ∆n ⊂ Br(z0). Note that the constant function and
the identity function are integrable so that with Proposition 2.11 we have,∫

∂∆n

f(z) dz =
∫

∂∆n

(
f(z0) + f ′(z0)(z − z0) + g(z)

)
dz =

∫
∂∆n

g(z) dz.

Using the estimate of Proposition 2.7, and (3),∣∣∣∣∫
∂∆n

f

∣∣∣∣ ≤ ‖g‖∂∆n l(∂∆n) <
ε

2
l(∂∆n)2 =

ε

22n−1
l(∂∆)2.

On the other hand, combining this with (2) we get,∣∣∣∣∫
∂∆

f

∣∣∣∣ <
ε

2
l(∂∆)2.

Since ε was arbitrary, we conclude that the integral of f along ∂∆ vanishes.

Corollary 2.15. Let D ⊆ C be a star-shaped region and f ∈ O(D). Then,

f is integrable in D.

Proof. This is obtained by combining Proposition 2.13 with Proposition 2.14.

We arrive at the important conclusion that a holomorphic function is
integrable (in star-shaped regions). Soon we will see that the converse is
also true: An integrable function is holomorphic.

Exercise 12. Let D := C \ [0, 1]. Show that f(z) := 1
z(z−1) is integrable in

D. [Hint: Observe that f(z) = 1
z−1−

1
z and use primitives for the summands.

Be careful about the domain of de�nition.]
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Exercise 13. Let D ⊆ C be a region and {fn}n∈N a sequence of continuous
integrable functions converging uniformly to a function f : D → C. Show
that f is integrable in D.

Exercise 14. Let D1, D2 ⊆ C be regions such that D1 ∩ D2 is connected.
Let f : D1 ∪ D2 → C be continuous. (a) Show that if f is integrable in D1

and also integrable in D2, then f is integrable in D1∪D2. (b) Give a counter
example in the case when the connectedness condition is removed.


